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Current Topic

e Machinery Vibration Trouble Shooting
 Fault Diagnostics Based on Forcing Functions

 Fault Diagnostics Based on Specific Machine
Components

 Fault Diagnostics Based on Specific Machine Types
o Automatic Diagnostic Techniques

* Non-Vibration Based Machine Condition Monitoring
and Fault Diagnosis Methods
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available and linking it automatically to known fault
types.

Difficult for many reasons.

e Diagnosis iIs often made using a wide array of
data/information.

e Diagnosis Is not often possible until the fault is
well developed.

* A wide range of known fault samples is usually
needed to diagnose existing conditions.
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Automatic Diagnostic Techniques

Y
iy, e

o

Queenrs

Difficult, but not impossible.

Application of amplitude limits on FFT based
frequency spectra within different frequency bands
(Masks).
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Automatic Diagnostic Techniques

Amplitude
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| | | | |
Frequency

Constant Percentage Bandwidth Acceptance Limits.
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Model Based Frequency Spectra

Mathematical model provides description of system

response.

Changes |

n the model are sensitive to changes in the

system (faults).

» Auto-Regressive (AR) models.

e AUtO-

Regressive Moving Average (ARMA)

MOC

els.

 Minimum Variance (MV).

* Prony Models, etc.
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Model Based Frequency Spectra

3 steps
1. Selection of an appropriate model type.

2. Calculation of the model parameters and
determination of the optimum model
order (size).

3. Calculation of the spectral estimate.
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Selection of
Appropriate
Model Type

TECHNIQUE |

Penodogram FFT
version

COMP. |
COMPLEXITY

(A & Mults)

MODEL(S)

Sum : hon'i-
cally related sinu-
soids.

~ ADVANTAGES AND
DISADVANTAGES

Output directly proportional to
power.

Most computationally efficient.
Resolution roughly the recip-
rocal of the observation inter-
val.

Performace poor for short data
records.

Leakage distorts spectrum and
masks weak signals.

" REMARKS _

Harmonic least squares fit.
Requires some type of fre-
quency domain statistical
averaging to stabilise
spectrum.

Windowing can reduce side- |
lobes at expense of resol-
ution.

Blackman-Tukey
(BT)

Lag Ests,: N;M
PSD Est.: MS

Identical to MA
with windowing of
the lags.

Most computationally efficient
if M<<N,,.

Resolution roughly the recip-
rocal of the observation inter-
val.

Leakage distorts spectrum and
masks weak signals.

Negative PSD values in spec-
tra may result with some win-
dow weightings and
autocorrelation estimates.

Autoregressive (AR)
Yule-Walker version

Lag Ests.: NyJM
AR Coeffs.: M?
PSD Est.: MS

Autoregressive
(all pole) process.

Model order must be selected.
Better resolution than FFT or
BT, but not as good as other
AR methods.

Spectral line splitting occurs.

Model applicable to seismic,
speech, and radar clutter data.
Minimum phase linear predic
tion filter guaranteed if biase
lag estimates are computed.
AR related to linear prediction
analysis and adaptive filtering.
Models peaks in the spectrum
better than valleys.
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utoregressive (AR)
Burg Algorithm ver-
ion

AR Coeffs.: N;M
+M?
PSD Est.: MS

|Autoregressive
(all pole) process.

High resolution for low noise
levels.

Good spectral fidelity for short
data records.

Spectral line splitting can
occur. Bias in the frequency
estimates of peaks. No implied
windowing. Nosidelobes. Must
determine order.

Stable linear prediction filte
guaranteed.

Adaptive filtering applicable.

Uses constrained recursiv
rleast squares approach.

utoregressive (AR)

Least squares or for-

ard-backward lin-
ar prediction
ersion

AR Coeffs.: N;M
+ M
PSD Est.: MS

Autoregressive
(all pole) process.

Sharper response for narrow-
band processes than other AR
estimates.

No spectral line splitting
observed. No sidelobes.

Bias reduced in the frequency
estimates. Must determine
order.

Stable linear prediction filte
|notguaranteed, butstable filte
results in most instances.
Based on exact recursive leas
squares solution with no con
straint.




Eox

Selection of
Appropriate
Model Type

November 8, 2010

Moving Average
(MA)

MA Coeffs.:
Nonlinear
Simult. Eqn. Set
Lag Ests.: NJM
PSD Est.: MS

[ MODEL(S)

[ TECHNIQUE | COMP. ADVANTAGESAND |  REMARKS |
COMPLEXITY DISADVANTAGES |
(Adds & Mults)

General form of BT technique.

Moving Average
(all zero) process.

Broad spectral responses (low
resolution).

Must determine order.

Has sidelobes.

ARMA Yule-Walker
version

Lag Ests.: NJM
Coeff. Compu-
tation: M

PSD Est.: MS

ARMA  process
(Rational
Transfer  Func-
tion) (MA order &
AR order).

Must determine AR and MA
orders.

Models all rational transfer|
function processes. g
Requires accurate lag esti}
mates to obtain good results. |

Pisarenko Harmonic
Decomposition
(PHD)

Lag Ests.: NyJM
Eigen Eqn.: M?
to M

Poly. Rooting:
Dependent on
root algorithm
Powers: M®

Special ARMA
AR coefficients.
Sum of nonhar-
monically
undamped
sinusoids in addi-
tive white noise.

with equal MA and|Does not work well with high

Must determine order.

noise levels.
Eigen equation and rooting are
computationally inefficient.

Requires accurate lag esti
mates to obtain good results. |
Spurious spectral lines if orde
selected too high.

Prony’s Method

AR Coeffs.: M? +
N,M

Poly Rooting:
Dependent on
root algorithm
Amp. Coeffs.:
M

PSD Est.: MS

Sum of nonhar-

damped
exponentials.
ARMA with equal
MA and AR

equal orders.

monically related|Output linearly proportional to

coefficients and|No sidelobes.

Must determine order.

power.

Requires a polynomial rooting.
Resolution as good as AR
techniques, sometimes better.

Uses least squares estimate
to obtain exponential para
meters.

First step same as least
squares estimation.

Prony Spectral Line
Decomposition

Coeffs.: M®
Rooting: Func-
tion of root
algorithm used
Amp. Coeffs.:
e

Sum of nonhar-

sinusoids.

monically related|Output linearly proportional to

Must determine order.

power.
Requires a polynomial rooting.
Resolution as good as AR
techniques, sometimes better.
No sidelobes.

Uses least squares estimation.

Capon Maximum
Likelihood (MLSE)

Lag Ests.: NgM
Matrix  Inver-
sion: M®

PSD Est.: MS

Forms of optimal
bandpass filter
for each spectral
component.

Resolution better than BT; not
as good as AR.
Statistically less variability in|
MLSE spectra than AR spec-

MLSE is related to AR spectra. |

tra.




Selection of Appropriate Model Type
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November 8, 2010 Page 10



Correlation

:2 B.IQ 8:6 B:B :;. 1.2
Time (seconds)

Autocorrelation function from sampled rolling
element bearing vibration data.
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Selection of Appropriate Model Type

Model parameters represent a weighted function
(series of terms) that, when used as a filter with pure
noise (random dynamic data) will generate the
original time series used to make the model.

Contain all the valuable information required to
reproduce the original signal (data compression).

Contain fault classification information.
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Calculation of Model Parameters
Queens

Yule — Walker Method

Yule, G.U., “On a Method of Investigating Periodicities in Distributed Series with

Special Reference to Wolfer’'s Sunspot Numbers”, Transactions of the Royal Statistical
Society of London, Series A, Vol.226, p267-298, July 1927.

Walker, G., “On Periodicity in Series of Related Terms”, Transactions of the Royal
Statistical Society of London, Series A, Vol.231, p518-532, 1931

Levinson — Durbin Algorithm

Levinson, N., “The Wiener (root mean square) Error Criterion in Filter Design and
Prediction”, Journal of Mathematics and Physics, Vol.25, p261-278, 1947.

Durbin, J., “The Fitting of Time Series Models”, The International Institute of Statistical
Review, Vol.28, p223-244, 1960.

Wiggins, R.A. and E.A. Robinson, “Recursive Solutionto the Multichannel Filtering
Problem”, Journal of Geophysical Research, Vol.70, No.8, p1885-1891, 1965.
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Calculation of Model Parameters

ns
Forward Linear Prediction

Kay, S.M., “Modern Septral Estimation: Theory and Application”, Prentice-Hall,
Englewood Cliffs, New Jersey, USA, 1988.

Kay S.M. and S.L. Marple, “Spectral Analysis: A Modern Perspective”, Proceedings of
the IEEE, VVol.69, No.11, p1380-1419, November 1981.

Morf, M., B. Dickinson, T. Kailath and A. Vieira, “Efficient Solution of Covariance
Equations for Linear Prediction”, IEEE Transactions on Acoustics, Speech and Signal
Processing, Vol.ASSP-25, p429-433, October 1977.

Forward-Backward Linear Prediction

Marple, S.L., “A New Autoregressive Spectrum Analysis Algorithm”, IEEE
Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-28, p441-454,
August 1980.

Burg Method

Burg, J.P., “Maximum Entropy Spectrum Analysis”, Proceedings of the 371" Meeting of
the Society of Exploration Geophysicists, Oklahoma City, Oklahoma, USA, October 1967.
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» Use the covariance function derived from a
given data set (time series) to generate a
set of model parameters.

 Filter some random data with the new model
and try to generate the original data set.

« Compare time series data from model to the
original.

e Adjust the model parameters in some way to
reduce the error between model based time
series and original.

* Repeat until the error is suitably small.
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Determine the Optimum Model Order

Estimation criteria for optimum AR model order selection

CRITERION OPTIMUM ORDER DEFINITION OF T
ESTIMATE ESTIMATION CRITERION
e, —_— = - —_— = — — — _1

FPE(p) =min{FPE(p) | p = 12,...m)

AIC (p) = min{AIC(p) | p = 12....,m)

AIC(p)=N,In(p,)+2p

RIS RIS () =min{RIS(p) | p = 1,2,...,m} RIS(p)=N,In(p,)+2Inp
i P N; . 2 N, « S
CAT CAT(p)=min{CAT() | p=12,...m}|[CAT®)= 2 | 5~=P| —| 7——;P»
Schwartz  |BIC(5)=min(BIC(p) | p = 1,2,...m} BIC(p)=N,In(p,)+

Hannan-Quinn

HQ(p) =min{HQ(p) | p = 1,2,...,m}

p In(In(N,))
N,

HQ(p)=N,In(p,)+

p is the model order

p is the optimum model order
N, is the sample size

m is half the sample size

p, is the prediction error power
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Determine the Optimum Model Order

Queens
X10™¢
I | ! I I [
3.5 j

Loss function
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Number of parameters

Final Prediction Error (FPE) Loss Function
for Rolling Element Bearing Data
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&  Determine the Optimum Model Order
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Increasing Model Orders
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Calculation of Spectral Estimate

o’At
1+ i a, exp(—j2nfkAt)
k=0

F:(f) is the AR power spectral density estimation,

a, are the AR coefficients,

o? is the variance.
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Amplitude (V%)

Calculation of Spectral Estimate
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AR model-based spectral estimate
Sine waves in noise
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Amplitude (V?)

Calculation of Spectral Estimate
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FFT-based spectral estimate
Sine waves in noise
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Example

Amplitude (V)
|
o
ro
T
-

(0] 100 200 300 400 500 600 700 800
Time (msec)

Vibration Signal
Outer Race Fault on a rolling Element Bearing
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Example

N
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04 &=

Amplitude (v)
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600 700 800
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Time (ms)

Vibration Signal
After High Pass Filtering
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Example

o
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Amplitude (V)
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Vibration Signal
After Rectification

November 8, 2010 Page 24



Example
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AR Frequency Spectrum of Outer Race Fault
(Model Order 20)

November 8, 2010 Page 25



o

, Example
€IS

Queens
1 T T T T T T
08 &
o
<
(&)
& 0-6 =
£
c
©
§ —
2 04+
S
(&)
<
02k 2
(0] / | | | ] | ]
0 20 40 60 80 100 120 140

Frequency (Hz)

AR Frequency Spectrum of Outer Race Fault
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Example
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Outer race defect frequency (53 Hz)
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AR Frequency Spectrum of Outer Race Fault
(Model Order 60)
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Example
Queens

Index Parameter Index Parameter Index - Parameter

1 —0-7480 8 0-1201 15 - 0-0142
2 0-5111 9 —0-0691 16 0-0256
3 —0-3039 10 0-0529 i1 —0-0473
4 0-1839 11 —0-0273 18 0-0330
5 —0-1023 ; 12 - 0-0315 19 —0-0200
6 0-0989 13 0-0175 20 0-0428
7 —0-0701 14 0-0030

AR Model Parameters
(Model Order 20)
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Example

Index Parameter Index Parameter Index Parameter
1 —-0-7332 15 0-0224 29 0-0165
2 0-5079 16 0-0249 30 0-0370
3 —0-2921 17 —0-0391 31 0-0410
4 0-1847 18 0-0335 32 0-0099
5 —0-1042 19 —0-0109 33 0-0166
6 0-1115 20 0-0448 34 - 0-0323
7 —-0-0730 21 —0-0027 35 —0-0481
8 0-1184 22 0-0256 35 —0-0756
9 —0-0616 23 0-0132 37 0-0635

10 0-0544 24 —-0-0178 38 0-0144
11 —0-0239 25 0-0710 39 0-0120
12 0-0405 26 0-0049 40 0-0013
13 0-0217 27 0-0455
14 0-0067 28 0-0257

AR Model Parameters
(Model Order 40)
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Example

Index Parameter Index Parameter Index Parameter
1 -0-6770 21 —0-0046 41 —0-0042
2 0-4546 22 ' 0-0074 42 0-0510
3 —0-2877 23 0-0004 43 —0-0825
4 0-1674 24 —-0-0275 44 0-1024
5 —0-0987 25 0-0576 45 —0-0362
6 0-0911 26 0-0156 46 0-0305
7 —0-0568 27 0-0371 47 0-0159
8 0-0839 28 0-0246 48 0-0201
9 —0-0345 29 0-0070 49 —0-0879

10 ; 0-0590 30 —0-0435 50 —-0-2415
11 —0-0377 31 0-0420 51 0-0458
12 0-0338 32 0-0120 52 0-0107
13 0-0208 33 —-0-0276 53 0-0403
14 0-0129 34 0-0011 54 0-0122
15 0-0142 35 0-0380 55 —0-0471
16 0-0344 36 -0-0703 56 0-0485
17 —0-0336 30 0-0467 57 —0-0223
18 0-0190 38 0-0168 58 0-0224
19 0-0097 39 0-0189 59 —-0-0129
20 0-0393 40 —0-0085 60 —0-0460

AR Model Parameters
(Model Order 60)
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Example
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AR Frequency Spectrum — No Fault
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Example
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Example
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AR Frequency Spectrum — Rolling Element Fault
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Example
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Nearest Neighbour Classification

Different time series (vibration signals) can
represent different conditions (faults), but these
are often difficult to distinguish.

When converted to models they become easier to
distinguish or group into sets with similar
characteristics.
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Nearest Neighbour Classification

Y
iy, e

Queens
The difference between two sets can be defined
as
X
I(ft)sfm) = Jfo(x) log Jolx) dx

Jm(X)

Where f, and £, are the probability density
functions of two different variables.
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Nearest Neighbour Classification

When x, and x,,, are multidimensional, normally
distributed variables, with mean values y, and y,,
and the covariance matrices 2, and 2, then,

2I(ﬁhfm) S log l'zmll

{2, S+ {27 (o= pm ) (o — Mm)}—n
Where: |A| Is the determinant of matrix A,
tr(A) Is the trace of matrix A,

A-lis the inverse of matrix A,
and A’ Is the transpose of matrix A.
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Nearest Neighbour Classification
Qqeens
If only a sample of data Iis available, (exact

probability density functions are not known) then
an approximation can be made using

2d(x‘°’,X""')=108" Ol!ﬂr{f L {2 o= e Moo= )} —n

Where the ” represents estimated values based
on the sample data.
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Nearest Neighbour Classification

Y
n

L

Q@ens

Given that each sample time series has a
corresponding AR model, a dissimilarity number
can be determined.

e g 1. B ol
2d(x Pyl B myps st B R G S
T Omi=0k=0

Where: G2 — sample covariance,
a; — AR model parameter,
p; — AR model order,
and C, — estimated covariance function.
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Nearest Neighbour Classification

i (x(t+Kk) = £)(x(1) - £)

1 n
8 Z ek TIFE S R
Knowing 2d(x©), x(M) (the dissimilarity between x(©)

and x(M) we can determine the probability of
misclassification of a sample as

P“exp{ d(x(m fm))}
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Nearest Neighbour Classification

Or, the probability of fault existence (the likelihood
of a fault being present when comparing new
samples with samples known to represent fault-
free conditions.

Pfr:IOOX(l_Pf).
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Experimental Results

(using the same data as above)
Statistical distance measure between signals
Samples
Known faults NOF ORF REF IRF
NOF 0-0115 0-7374 0-5366 1-5494
ORF 0-3590 0-0059 1-2104 0-8434
REF 10450 1-3321 0-0042 0-1598
IRF 0-3062 0-2722 0-2782 0-0065

November 8, 2010
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Experimental Results

o

Queens (using the same data as above)

Probability of fault existence ( P,) measure between signals

Samples
Known faults NOF ORF REF IRF
NOF 1-2 52-2 41-5 78-8
ORF 30-2 0-6 70-2 57-0
REF 64-8 73-6 0-4 18-0
IRF 26-4 23-8 315 0-7
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Experimental Results

" s 'j.

Mgk

Probability of fault existence ( Py.)

Queens (using the same data as above)

Sample signals

Known condition NOF ORF REF IRF
NOF1 1-2 52-2 415 78-8
NOF2 6-5 54-2 743 78.0
NOF3 49 62-6 52-6 70-1

November 8, 2010
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Nearest Neighbour Classification

Good example of a trending and classification
parameter that can distinguish between fault-free
conditions and various types of faults, as well as
distinguish between each fault type.

However, this procedure needs known fault data.

And, what happens if faults are poorly
distinguishable (early stages) or if the data is
noisy.
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Nearest Neighbour Classification

This is an example of supervised classification.

The user defines the specifics of classification (#
of classes, etc.).

Some prior knowledge of the system and signals
IS required.
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Inductive Inference Classification

Reducing the data to a common form removes
redundant/unneeded data.

Classification based on the length of description
of a data set Is then possible.

Example: classify people using as few
parameters as possible.
Physical atributes - Sex
- height/weight
- hair colour
- eye colour, etc.
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Inductive Inference Classification

Q@ns
By randomly dividing the sample into groups, then
shifting members between groups we can zero in
on the shortest (optimum encoded) description of
all the groups (spectra).

Descriptions based on sample statistics.

This is an example of unsupervised classification.

Mechefske, C.K. and D. Plummer, “Gradual Deterioration Trending and Fault
Diagnosis in Cutting Tools Using Inductive Inference Classification”, Int. Journal
of Machine Tools Manufacture, Design, Research and Application, Vol.34, No.4, p591-
601, 1994.
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Inductive Inference Classification

Example
Class A Class B Class C
Thing serial Attribute Thing serial Attribute Thing serial Attribute
number value number value number value
1 72.86 11 815.30 21 25817.0
2 —137.75 12 985.90 22 17286.1
3 —27.38 13 1029.58 23 24142.2
4 —132.29 14 88K.58 24 10222.9
5 31.80 15 932.66 25 9785.0
6 —51.12 16 1083.05 26 23177.3
] 20.10 17 1311.56 27 35161.2
8 160.65 18 511.14 28 27494.2
9 84.76 19 780.36 29 14923.9
10 26.81 20 1224.53 30 28853.5
Mean 4.84 Mean 956.27 Mean 21686.33
standard 94.30 standard 229.64 standard 8367.48
deviation deviation deviation

Data to be Classified — Shown in True Classes.
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Example

Inductive Inference Classification

Parameter described

Description length estimation equation

(Units: Nits)

Relative abundance of a class

Distribution parameter for each class
(Mean)

Distribution parameter for each class
(standard deviation)

Attribute values for each thing

n
= 10g2 ?

o
log,
= (an/12)

log; (6/n(n —1)3/6/(n — 1))

|
. logz (____ (e—(.‘c - m2;‘202))
2no

n is the number of things in a class; x is the attribute value of any particular thing; m is a class mean; o is

a class standard deviation.

Data Description Length Estimation Equations

November 8, 2010

Page 50



Example
Estimated data description length (Nits)
Classification Class definition Attribute values Total
One class ' 25.13 464.20 489.33
Three random classes 84.71 460.31 545.02
Two classes 43.83 410.65 454.49
(A and C combined)
Three true classes 59.37 333.58 392.95

Estimated Data Description Lengths for Various Classifications.

November 8, 2010
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Inductive Inference Classification

Experimental Results — Low Speed Rolling Element Bearings

Rolling element defect frequency (10-2 Hz)

REF

20 I Blo |I nJ 14
w0  Frequency (Hz)
2 v : : v T
1.8 b
1.6 -
8 a4 4
o | com1
s it -
ORF £ ol ] ORF & REF
4 b =
B.2 [
L za 48 [X] a8 188 1ze 148
140 FREQUENCY <(Hx)
2 T T T -+
1.8
1.6
o8 F‘ AL
= H ( :
I R F g Inner race defect frequency (7-7 Hz) > 2l O M 2
=
§06 E al
5 el ORF, REF
04 =
8 el & IRF
a.4
o2
a
o I
o 20 40 60 140
Frequency (Hz)
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Inductive Inference Classification

Queens Experimental Results — Low Speed Rolling Element Bearings

True class

Thing serial number—Snob class serial

No fault

Outer
Race
Fault

Inner
Race
Fault

Rolling
Element
Fault

Fault
Combination
1

Fault

Combination
2

1-01
1-06
1-11

2-16
2-21
2-26

3-31
3-36
3-41

4-46
4-51
4-56

5-61
5-66
5-71
6-76

6-81
686

1-02
1-07
1-12

2-17
2-22
2-27

3-32
337
3-42

4-47
4-52
4-57

5-62
5-67
572
6-77

6-82
6-87

1-03
1-08
1-13

2-18
2-23
2-28

3-33
3-38
343

4-48
4-53
4-58

5-63
5-68
573
678

6-83
6-88

1-04
1-09
1-14

2-19
2-24
2-29

3-34
3-39
3-44

4-49
4-54
4-59

5-64
5-69
5-74
6-79

6-84
6-89

1-05
1-10
1-15

2-20
2-25
2-30

3-35
3-40
345

4-50
4-55
4-60

5-65
5-70
735
680

6-85
6-90

Classification results for all fault types.
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Queens Experimental Results — Low Speed Rolling Element Bearings
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AR model based frequency spectra from low speed rolling
element bearing gradually deepening outer race fault.
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Known Reference Spectra Description Length (Nits)

Outer Rolling Inner Fault Fault
race element race combination combination
Test No. No. fault fault fault fault 1 _ 2
1 881.7 2507.0 1325.3 2217.4 2102.1 1774.0
2 876.2 2105.4 1161.7 1884.3 2026.8 1725.1
3 1086.9 1495.9 988.4 1377.3 1862.2 1611.2
4 1223.8 1632.4 1111.8 1457.6 1915.9 1552.2
5 1593.7 1349.3 1048.8 1307.5 1815.9 1583.8
6 17712 1183.9 1131.7 1341.0 1766.0 1549.5
7 2572.6 910.4 1309.9 1405.8 1645.8 1463.3
8 2596.8 883.8 1426.2 1587.3 1667.2 1477.4
9 3156.8 863.6 1628.2 1781.8 1609.2 1434.3
10 3293.2 871.3 1703.6 1810.6 1598.7 1429.6
11 3713.8 855.6 1878.0 1993.4 1563.8 1403.5
True
Fault 152 886 867 919 1060 975
Average

Estimated data description lengths vs. gradual development of
an outer race fault.
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4000

35600 —

3000 —

2500 —

2000 —

Snob description length

1500 —

1000

I I I I |
500O 2 4 6 8 10 12

Degree of bearing deterioration (1 = none, 11 = complete)

Estimated data description lengths vs. gradual development of
an outer race fault. (1-NOF, 2 - ORF, 3 - REF, 4 — IRF, 5 - COM1, 6 —- COM2)
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UNIVERSITY

Bty i
(X supplied by user)
Flowchart of
procedural Steps' Divide each class in half

Divide each sub class in half
(continue until sub class size is < 4 but > 1)

Shift some members of smallest sub class and recalculate
estimated description lengths
for all things, sub classes and classes

v y

If estimated description If there is no significant If estimated description
length decreases: change in estimated length increases:
keep changes description length reverse changes

RN |

Report on class members
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Experimental Results — Cutting Tool Deterioration

Accelerated wear rate tests 1 — 4

Regular wear rate test — 5

Depth of cut Feed rate  Cut speed Cut length
Test No. (mm) (mm/rev) (m/min) RPM (min:s)
1 215 0.20 150 397 3:52
< 2:13 0.20 150 400 4:41
3 2.15 0.20 150 404 4:16
4 2. 15 0.20 150 410 4:38
5 1.52 0.25 70 200 44:24

Feed rate and speed conditions
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AR frequency spectra for test # 1.
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FREQUENCY (Hz)

AR frequency spectra for test # 2.
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Inductive Inference Classification

Experimental Results — Cutting Tool Deterioration
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AR frequency spectra for test # 3.
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FREQUENCY (Hz)

AR frequency spectra for test # 4.
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Queen$  Experimental Results — Cutting Tool Deterioration

Snob class
True class Thing serial number serial number
Minimal wear 1-01 - 1-20 2-01 — 2-20 1
3-01 = 3-16 4-01 — 4-22
Moderate wear 1-21 —- 1-30 2-21 — 2-28 2
3-17 — 3-27 4-23 — 4-33

Advanced wear 1-28 — 1-60 2-29 — 2-60 3
- 3-30 — 3-60 4-34 — 4-60

Classification results — accelerated wear rate test data.
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AR frequency spectra for test # 5 (normal wear rate).
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Snob class
True class Thing serial number serial number
Minimal wear 1-1 — 1-7 1
Moderate wear - 1-8 — 1-10 2
Advanced wear 1-11 — 1-14 3

Classification results — normal wear rate test data.
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Spectra description length (NITS)

2000 3

0 10 20 30 40 50 60
Degree of deterioration (1 = None, 60 = Complete)

Estimated data description lengths vs. gradual deterioration.
Baseline — minimal wear. (1 —test #1, 2 — test #2, 3 — test #3, 4 — test #4)
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Queens Experimental Results — Cutting Tool Deterioration

T

I

10 20 30 40 50 60
Degree of deterioration (1 = None, 60 = Complete)

Estimated data description lengths vs. gradual deterioration.
Baseline — advanced wear. (1 —test #1, 2 — test #2, 3 — test #3, 4 — test #4)
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5000

4500 -

4000

3500

3000

2500

2000

1500

Spectra description length (NITS)

1000

500 F

0 ¥ |
2 4 6 & 10 12 14
Degree of deterioration (1 = None, 13 = Complete)

Estimated data description lengths vs. gradual deterioration.
Baseline — minimal wear. (test #5 - normal wear rate)
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